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Abstract

The U.S. agricultural sector is experiencing significant structural change. Farm size is rising

and activities are broadening, including more off-farm employment, implying economic

incentives for larger and more diversified farms, and complementarities among agricultural

netputs. We quantify such patterns for farms in the corn belt, by measuring scale economies,

and output and input contributions and jointness. We estimate the multi-output and -input

production technology by stochastic frontier techniques applied to output and input distance

functions. We find that both scope and scale economies have important economic

performance implications, and that an input-oriented framework including off-farm income

best characterizes agricultural production.
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1. Introduction

Average farm size in the U.S. Heartland1 rose by 18 percent between 1980 and
2000. Similarly strong growth in farm size occurred in the Lake and Northern Plains
states, although slower growth is evident in other areas (4 percent in the Prairie
Gateway).2 Agricultural production is also highly concentrated in large farms, with
‘‘large and very large’’3 family farms making up only 8 percent of all farms in 1998,
but accounting for 53 percent of agricultural production. These large farms were
‘‘viable economic businesses’’ in 1998, in the sense that they generated positive
profits, whereas ‘‘[m]ost farm typology groups did not report adequate income to
cover expenses.’’ (USDA, 2001a). Such patterns suggest that significant scale
economies exist in modern agriculture, and that this technological reality is putting
critical pressure on the small family farm.

In addition to the apparent importance of scale economies, product diversity or
scope economies seems to contribute considerably to farms’ economic performance.
The USDA/ERS Family Farm Report (2001a) states that: ‘‘ydiversification is a
significant factor explaining differences in the level and variability of income between
higher and lower performing small farms. Financially successful small farms tend to
be more diversified.’’ The Report also notes that production of multiple outputs is
most prevalent for high-sales farms, and that diversification affects input demand as
well as economic performance. Alexander et al. (2001) also document the importance
of product diversity, based on a survey of Iowa farmers’ production practices. They
find that 94 percent of the respondents grew both soybeans and corn, with the
balance differing by year. More than half also grew other crops, and 60 percent
raised livestock.

Another type of farm ‘‘output’’—or contribution to revenue—is also notably
affecting the economic health (or even viability) of family farms; off-farm income has
become increasingly important in many agricultural areas. USDA (2001a) finds that
‘‘farm households rel[y] heavily on off-farm jobs,’’ with 55 percent of farm
households reporting that the operator, spouse, or both worked off-farm to increase
farm household income, and USDA (2001b) documents that off-farm income now
dominates net farm business income in the U.S.4 Farmers in more rural states are,
however, less able to enhance their revenues through off-farm earnings than those in
more urban environments (Gardner, 2001).5
1As recently defined by the USDA; states for these regions are listed in Appendix A.
2USDA Agricultural Statistics, selected issues, National Agricultural Statistics Service, Washington,

DC.
3The USDA classifies large farms as those with $250,000 –$500,000 farm revenue, and very large farms

as those with more than $500,000 revenue; see Appendix A, Table 7.
4Income from farming in the U.S., measured by net-farm cash income, was $55.7 billion in 1999, as

compared to income from off-farm sources of $124 billion (USDA, 2001b).
5Gardner (2001) shows that the growth of farmers’ income is significantly negatively related to the rural

proportion of the state’s population. As he notes, this supports Schultz’s (1950) hypothesis that a more

urban environment increases farmers’ incomes through enhanced off-farm earnings opportunities, as well

as the demand for farm products and services.
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The economic performance of U.S. agricultural producers seems also to be
increasingly influenced by input jointness or complementarity, and embodied
technological change. ‘‘Production systems’’ have been recognized as a progressively
greater presence in agricultural markets. Alexander and Goodhue (2002) show that
accounting for the mounting complementarity of agricultural inputs (such as seeds,
pesticides, and labor or machinery devoted to tilling), and substitutability across
production systems (rather than individual inputs), is crucial for analysis of
transgenic (or genetically modified, GM) seed demand. Increased effectiveness of the
inputs used for production, through adoption of new technology such as that
embodied in GM crops, may also have enhanced farms’ performance and
competitiveness.6

These output and input (netput) relationships affect the shape and shifts of the
production technology for U.S. agricultural producers, and thus how efficiently
farms of different sizes and with different netput composition mixes might be
producing. However, farm/farmer characteristics may also affect observed produc-
tivity. USDA (2001a) documents key dissimilarities in hours worked, age, education,
debt, and management methods, that affect both overall agricultural productive
performance and the benefits obtained from innovative adoption. If some types of
farmers are producing in a technically inefficient manner, this will affect the observed
economic performance.

In this paper, we attempt to quantify these types of scale, scope, system, and
efficiency effects determining the economic performance of farms in the U.S. Corn
Belt. We focus on output and input jointness and implied complementarities, by
measuring scale economies (overall relationships between inputs and outputs), scope
economies (output relationships), and input substitutability/complementarity (input
relationships).7

The farms in our data sample generate a variety of outputs; they produce corn,
soybeans, other crops and animal products (dairy, livestock), and earn off-farm
income. These production processes rely on a wide variety of inputs, some of which
may be linked together in production systems, including labor, fuel, fertilizer, seed,
feed, machinery, land, other livestock-specific materials, other crop-specific
materials, and other general expenses.

The data for these farms, from a U.S. Department of Agriculture (USDA) farm
survey, comprise 15,218 observations across 5 years (1996–2000). These data are
summarized in terms of cohorts, by averaging similar farms in like areas for each
observation, resulting in a balanced pseudo-data panel of 650 observations (13
cohorts for 10 states by year). Our estimates based on these data therefore represent
cross-farm or -cohort as well as spatial and temporal variations in production
processes.
6This has been documented, for example, by Fernandez-Cornejo and McBride (2000).
7Risk from yield and price uncertainties or market power may also affect jointness and diversification,

as discussed further below. This behavioral motivation for observed output and input composition is not a

direct focus of this primal model, although it should be recognized for interpretation.
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We represent the underlying multi-output, multi-input technology of these farms
allowing for deviations from the production frontier (technical inefficiency, TE),
with alternatively an output or input orientation and with and without off-farm
income, by estimating output and input distance functions by stochastic production
frontier methods. Our estimates allow us to compute and evaluate a range of
measures reflecting the output and input relationships that contribute to economic
performance.

The alternative perspectives of the output and input distance function frameworks
provide useful comparisons for our analysis. Homogeneity requirements imply that
production expansion is at least implicitly evaluated holding output composition (for
the output distance function) or input composition (for the input distance function)
fixed. This implies different ‘‘takes’’ on which relationships are the most crucial for
appropriate representation of production processes; input (output) contributions
and substitution may better be captured by the output (input) distance function. By
contrast, the output and input distance functions, respectively, reflect output and
input contributions or shadow values in a relative (ratio) form. These perspectives
could therefore provide quite different implications, although the primary results of
our analyses are quite consistent.

Our findings indicate more complementarity or jointness, and yet less consistent
composition, for outputs as compared to inputs. That is, diversification is clearly
productive but output composition varies more than input mix across type of farm,
so scope as well as scale economies are important economic performance ‘‘drivers’’.
This suggests that an input distance function implicitly based on constant input
composition but directly allowing for a full range of output relationships is
advantageous for representing U.S. agricultural production processes (although
characterizing scale economies holding input composition constant may over-
estimate their impact).

Further, off-farm income appears empirically as well as anecdotally to be a key
aspect of economic performance and economic viability, especially for small farms.
Allowing for this component of farm ‘‘output’’ suggests slightly more efficiency and
less scale economies than when the focus is solely on farm business. It also somewhat
improves the representation of production processes for the input-oriented model,
but exacerbates problems with the output-oriented model. This seems due to the
widely varying role of off-farm income across farm types, that augments the
variability of output composition when it is included as part of total farm activity or
revenue.
2. The models

To explore the roles of scale economies, product diversification, and production
systems on farms’ economic performance, we require a multi-output, multi-input
specification of the technology that allows us to represent interactions among these
netputs. Such a specification may be characterized from the output or input
perspective, via the output or input sets P(X, R) or L(Y, R). P(X, R) is the set of
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output vectors Y which can be produced using the input vector X, given the levels of
external or shift factors in the vector R, and L(Y, R) is the inverse—the set of all X
vectors that can produce Y given R.

These relationships can be used to develop estimable distance functions, again
with either an output or input orientation. The output (O) distance function DO(X,
Y, R) identifies the most Y possible to produce given X, and the input (I) distance
function DI(X, Y, R) the least X necessary to produce Y, defined according to
P(X, R) or L(Y, R), respectively. More formally, as developed by Färe (1988),
Färe et al. (1994), and Färe and Primont (1995):

DOðX;Y;RÞ ¼ minfY : ðY=YÞ 2 PðX;RÞg ð1aÞ

and

DIðX;Y;RÞ ¼ maxfr : ðX=rÞ 2 LðY;RÞg: ð1bÞ

DO(X, Y, R) can thus be interpreted as a multi-output production function, and
DI(X, Y, R) as a multi-input input-requirement function, with both allowing for
deviations (distance) from the frontier. These primal functions represent technical
(substitution) relationships amng and across the inputs and outputs—not economic
optimization.8 Thus the deviations from the frontier are interpreted in terms of
technical efficiency, TE.

To empirically implement these functions, linear homogeneity with respect to
outputs (for DO) or inputs (for DI) must be imposed. As described by Lovell et al.
(1994), this can be accomplished for DO by normalizing by one of the outputs;
homogeneity implies DO(X, oY, R)=oDO(X, Y, R) for any o>0, so if o is set
arbitrarily at 1/Y1, DO(X, Y/Y1, R)=DO(X, Y*, R), where Y*=Y/Y1. The input
distance function is analogously normalized by one input; DI(oX, Y, R)=oDI(X, Y,
R) for any o>0; so for o=1/X1, DI(X, Y, R)/X1=DI(X/X1, Y, R)=DI(X*, Y, R),
where X*=X/X1.

We define Y, X, and R based on USDA annual farm survey data that allow us to
distinguish a broad range of both outputs and inputs, and thus to evaluate the
impacts of product diversification in terms of output jointness, and of production
systems in terms of input complementarity. The data are for farms in states for which
corn is a major component of agricultural output, that produce any combination of
crops and animal products. The farm-level data were used to construct a pseudo
panel data set based on cohorts, to deal with the problem of linking annual cross-
section data intertemporally (more detail is provided in the data appendix).

For outputs, Y, we distinguish three types of crops—corn, YC, soybean, YS,
and ‘‘other’’, YO—each of which comprises a large percentage of farm income
(see Table 5 of Appendix A) and have been impacted by biotech adoption during this
time period.9 We also separate out animal output production (meat or dairy), YA,
8Mundlak (1996) has shown that when information is incomplete, panel data fixed effects estimation

based on a primal model may be preferable to a dual estimator that could generate statistically inefficient

estimates due to price variability, as pointed out by an anonymous referee.
9The planting of insect resistant corn and herbicide tolerant soybeans increased dramatically over our

sample period.
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and off-farm income, YI. Although YI is not really a farm ‘‘output’’, it represents
revenue generated from the effort of the farm family, so for our off-farm model
with YI included Y can be interpreted as a farm activity rather than output
vector.

We also separate out a variety of inputs, X: labor, XL, fuel (energy), XE, fertilizer,
XF, seed, XSD, feed, XFD, livestock (animal) expenses, XA, custom crop expenses, XC,
other expenses, XO, machinery, XK, and (quality-adjusted) land, XLD.

10 The material
categories in particular are broken down more than is usually possible, permitting us
to explicitly link complementary inputs that might comprise a production system.
Note that the labor input for our off-farm specification is augmented to include
effort devoted to off-farm activities, based on the opportunity cost of the associated
operator or spouse.

The farm-level data also allow us to identify farm- and farmer-specific
characteristics that we treat as shift factors, or components of the R vector, Rj.
Farmer characteristics are age, AGE, and education, ED. Farm characteristics are a
debt–asset ratio, DA, and the proportions of land that are rented, RNT, and planted
in GM corn and soybean crops, GMC and GMS. We also include dummy variables
for each year, T1996–T2000 (T1996 left out for estimation) and for four size classes or
typologies (loosely from small to large), residential farms, RES, small family farms,
SM, large family farms, LG, and very large family and corporate operations, CORP
(with RES left out for estimation).

The Rj factors are treated as fixed effects, except for GMC and GMS, for which
cross-effects are included because one would expect these factors to interact with
specific inputs or outputs. For the output-oriented specifications that focus on input
use, GMC and GMS are ‘‘interacted’’ with XSD and XC (which capture seed and
pesticide purchases), because enhanced embodied technology might be expected to
increase the productive contribution of seeds, and reduce the contribution of
pesticides. For the input-oriented specifications, we interact GMC and GMS with YC

and YS to directly capture yield and output substitution impacts of genetically
modified seeds.

Summary statistics for these Y, X, and R variables are provided in Table 5
of Appendix A for the year 2000, in total and distinguished by cohort type.
The reported values are averages across all the farms in the sample. Both the
levels and composition of inputs and outputs vary by type of farm, with the
average farm in the survey generating slightly more than half its farm revenues from
crop production, and making about a third of its total revenue from off-farm
income.11
10XA includes not only the cost of purchased livestock, but also bedding and litter, and medical

expenditures (medical supplies, veterinary and custom services for livestock). XC includes hauling and

machine hire, irrigation, and pesticide expenses. XO includes general business expenses that cannot be

ascribed specifically to crops or animals, such as interest and insurance.
11Note that capital and land services, as well as wages/prices of the farm operator/livestock,

are imputed, so overall input payments in terms of opportunity costs exceed revenues for the average

farm.
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One issue that arises for implementing the distance function models is which of the
outputs or inputs might be used as normalizing factors. Glossing over the
econometric issues associated with a numeraire netput,12 and recognizing that the
final results are invariant to this choice (Coelli and Perelman, 2000), there could still
be economic reasons for choosing Y1 or X1. For our output distance function
specifications, we specify Y1=YC, because we are focusing on farms where corn is
the primary commodity crop. For our input specifications, we specify X1=XLD, so
all other inputs are represented relative to land. This is consistent with the typical
agricultural economics approach to production modeling in terms of yields, or inputs
(and outputs) per acre.

Another issue to underscore before moving to empirical implementation is
differences embedded in the output versus input perspective, due to both the dual
nature of the output- and input-oriented frameworks and fixities when one evaluates
farm growth or expansion. That is, enhanced economic performance is represented
by the output distance function through output expansion given input use, and
conversely by the input function through input contraction given output production.
This expansion or contraction is, however, based on observed output or input
composition, respectively; output or input ratios are held constant when measuring
output or input elasticities (and thus scale economies). So in the output distance
function model outputs are not as much ‘‘choice variables’’ as are inputs, and vice
versa.

The choice of specification therefore depends on whether one believes production
jointness or systems are more fundamental on the output or input side. If inputs are
essentially fixed for a farmer, then output composition is the primary economic
performance determinant and an input-oriented function is more appropriate. If,
however, the balance of inputs used is more flexible than outputs produced, an
output-oriented function is preferable.
3. Empirical implementation

3.1. The model

For empirical implementation of our models, we assume the distance
functions can be approximated by translog functional forms, which limit a
priori restrictions on the relationships among the outputs and inputs that we
wish to explore. However, since we treat most of the R factors as fixed
effects, the functions are not fully flexible.13 The resulting functions are of
12As Coelli and Perelman argue, this should not present econometric problems because ‘‘ only ratios of

the outputs appear as regressors and these ratios may be assumed to be exogenous, since the distance

function is defined for radial (proportional) expansion of all outputs, given the input levels, and hence by

definition the output ratios are held constant for each firm.’’
13This reduces the number of cross-terms with our specification, which is so disaggregated across

outputs and inputs that with full flexibility the cross-Rj terms have negligible significance.
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the form:
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¼ TLIðR;X�;YÞ; (2b)

where i denotes farm, t time period, m, n the outputs, k, l the inputs, j the external
effects, and s the types of GM seeds (C,S). Rewriting these functions with 	 ln DO

it ¼

	uO
it and 	 ln DI

it ¼ 	uI
it as one-sided error terms, and including ‘‘white noise’’ error

terms vit
O and vit

I representing random factors such as measurement error or
unobserved inputs, results in the estimating equations:

	 ln Y 1;it ¼ TLOðR;Y�;XÞ 	 uO
it þ vOit ð3aÞ

and

	 ln X 1;it ¼ TLIðR;X�;YÞ 	 uI
it þ vIit: ð3bÞ

Coefficient estimates for these equations have the opposite signs from those for a
standard production or input requirement function. qTLO=qX k, for example,
represents the overall change in outputs (the change in Y1 with all output ratios, and
thus output composition, constant) with a change in Xk. However, from the distance
function perspective this estimated ‘‘marginal product’’ is negative instead of
positive. Similarly, qTLI=qX 1 represents the overall change in inputs (given
input composition) with a change in Y1, but this ‘‘marginal input requirement’’
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(or, loosely, ‘‘marginal cost’’) of Y1 is again negative. To interpret the measures
from (3) more similarly to those from these more familiar functions, we thus reverse
their sign:

ln Y 1;it ¼ 	TLOðR;Y�;XÞ þ uO
it 	 vOit ; ð4aÞ

ln X 1;it ¼ 	TLIðR;X�;YÞ 	 uI
it 	 vIit: ð4bÞ

These equations are written in a standard stochastic production frontier form
(with a two-part error term representing deviations from the frontier and random
error). They can therefore be estimated econometrically using maximum likelihood
techniques,14 assuming that vOit or vIit are independently and identically distributed
random variables, Nð0;s2vÞ, and uO

it or uI
it are nonpositive random variables

independently distributed as truncations at zero of Nð0;s2uÞ. For our estimation,
we have applied the error components model of Battese and Coelli (1992), using Tim
Coelli’s FRONTIER program, as in Coelli and Perelman (2000) and Paul et al.
(2000).

3.2. The performance measures

Various measures that summarize production processes and act as performance
indicators can be constructed as derivatives or elasticities from our estimated model.
For example, combined first-order netput elasticities represent scale economies, and
thus capture the extent to which productivity increases with growth. Such measures
provide insights about the competitive disadvantages faced by small farms, and thus
farmers’ incentives to expand their scale of production to enhance their
competitiveness. Individual first-order elasticities characterize input- or output-
specific contributions to these economies, and identify the productive contributions
of farm/farmer characteristics or unmeasured effects specific to a given year or
cohort. Second-order elasticities reflect production complementarities (or biases)
that reflect economic performance impacts from output or input jointness.

More specifically, to develop these performance measures we first focus on the
overall Y–X relationship. From the output distance function, this relationship,
measured as the sum of the output elasticities for each input, shows how much
overall output would increase from a 1 percent increase in each input, analogous to a
returns to scale estimate from a production function. That is, the ‘‘output elasticity’’
for input Xk, 	eDO;Xk

¼ 	q ln DO=q ln X k ¼ q ln Y 1=q ln X k ¼ eY ;X k
, represents

the percent change in Y1 from a 1 percent change in Xk, holding all output ratios Y*
(and thus output composition) constant. Such elasticities thus represent the returns
to or output contributions from Xk changes, like output elasticities from production
function estimation. Also, if qY 1=qX k is interpreted as the marginal product of Xk

(an increase in overall output from an increase in Xk, MPk), eY ;Xk
can be thought of

as the ‘‘output share’’ of Xk (relative to Y1); eY ;Xk
¼ MPkX k=Y 1. Summing these
14This method, initially developed by Aigner et al. (1977) and Meeusen and van den Broeck (1977), is

discussed in depth in Coelli et al. (1998).
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measures results in the output-oriented distance function-based scale economy
measure (Färe and Primont, 1995) 	eDO ;X ¼ 	

P
kq ln DO=q ln X k ¼P

kq ln Y 1=q ln X k ¼
P

keY ;Xk
¼ eY ;X : eY ;X41 implies increasing returns to scale;

input increases generate a more than proportionate output expansion (with
proportional changes in all outputs).

For the input distance function, the X–Y scale economy relationship, represented
as a sum of the individual input elasticities conversely to the output-oriented
measure, reflects how much overall input use must increase to support a 1 percent
increase in all outputs. This is similar to a cost function-based scale economy
measure that captures input use changes required for output growth, although this
primal measure represents just the technical relationship—not input choice.

Formally, the individual input elasticity summarizing the input expansion required
for a 1 percent increase in Ym is 	eDI ;Ym

=	qlnDI/qlnYm=qlnX1/qlnYm=eX ;Y m .
Dual to the ‘‘output share’’ notion above, such a measure can be thought of as an
‘‘input share’’ of Ym (relative to X1): qlnX1/qlnYm=(qX1/qYm)Ym/X1. In combina-
tion, these elasticities represent scale economies: 	eDI;Y ¼ 	

P
mq ln DI=q ln Y m ¼P

mq ln X 1=q ln Y m ¼
P

meX ;Y m ¼ eX ;Y consistent with Baumol et al. (1982) for a
multiple-output cost model and Färe and Primont (1995) for an output distance
function. The extent of scale economies (for proportional changes in all inputs) is
implied by the short-fall of eX,Y from 1.

The first-order elasticities eYX k
; eYX ; eXY m , and eXY can also be decomposed into

second-order effects reflecting input or output composition changes as scale expands.
This information is implied by technological bias measures, indicating for the output
distance function how the Xk output elasticity or share (eYX k

) adapts to a change in
another input, and the reverse for the input distance function. Such measures thus
provide insights about input and output jointness, or production systems. The
performance impact of such netput complementarity is represented by a combination
of the biases. If overall output (input) relationships are complementary, an increase
in one output (input) enhances the contributions of other outputs (inputs) and thus
performance.

Specifically, for the output distance function eYX k ;X1
¼ qeY ;X k

=q ln X 1 represents
the impact on the contribution or share of input Xk from an increase in X1. If Xk and
X1 in some sense ‘‘move together’’ (are complementary or act as a system), an
increase in X1 shifts up the share and thus marginal product of X k : eYX k ;X1

40. This
measure in the translog context collapses to the cross-input bkl coefficient estimate;
with symmetry, eYX k ;X1

¼ bkl ¼ eYX l ;X k
: Similarly, eXY m;Yn ¼ qeX ;Ym=q ln Y n from

the input distance function represents the increase in the Ym input share if Yn

also increases. If eXY m ;Y no0, output jointness or complementarity is implied;
input use does not have to increase as much to expand Ym if the Yn level is
higher. This elasticity is represented by the cross-output coefficient estimate
bmn : eXY m;Yn ¼ bmn ¼ eXY n;Y m .

In addition to information about input (output) patterns, some insights about
output (input) contributions may be distilled from the output (input) distance
function, but they are relative due to the ratio form of the arguments of the function.
That is, from the output perspective, 	qDO=qY m ¼ qY 1=qY �

m ¼ r�m reflects the
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(negative) shadow value of Ym relative to Y1, or, loosely, the slope of the production
possibility frontier.15 eY ;Ym ¼ q ln Y 1=q ln Y �

m ¼ r�mY �
m=Y 1 therefore represents the

‘‘shadow share’’ or contribution of Ym relative to Y1, and the coefficient bm�n� ¼

qeY ;Y m=q ln Y �
n reflects the change in this share from a change in output (ratio) Y �

n.
Analogous input relationships may be characterized from the input distance
function. However, these relative measures are less readily interpretable than the
‘‘absolute’’ measures overviewed above that directly identify the productive
contributions of each output (input).

The performance impacts of the R vector components also can be estimated as the
distance function elasticities 	eDO;Rj

¼ 	q ln DO=qRj ¼ q ln Y 1=qRj ¼ eY ;Rj
and

	eDI ;Rj
¼ 	q ln DI=qRj ¼ q ln X 1=qRj ¼ eX ;Rj

; eY ;Rj
40 (more output is produced

for a given input vector if Rj is greater), or eX ;Rj
o0 (less input is required to produce

a given output vector if Rj is greater), implies enhanced productivity or performance
from Rj. Since most of our Rj variables are included only as fixed effects or overall
shift factors, these impacts are implied simply from their associated estimated
parameters (they have only a first-order effect and no biases). For GMC and GMS,
however, cross-effects with XSD and XS, and YC and YS, are embedded in eY ;Rj

and
eX ;Rj

, respectively.
Finally, from the one-sided error terms, uO

it or uI
it, we can quantify the levels of

(residual) technical efficiency, TEO=exp(uit
O), and TEI=exp(uI

it) (see Coelli et al.,
1998, for elaboration). That is, the deviation of a particular observation from the
estimated frontier identifies the remaining apparent technical inefficiency after the
impacts from all our measured factors are taken into account. The deviations of the
TE measures from 1 indicate the percent by which production would have to
increase, or input use would have to decrease, to reach the production frontier.
4. Empirical results

We estimated four alternative models, (4a) and (4b) with and without off-farm
income, which we denote our output and input ‘‘base’’ and ‘‘off-farm’’ specifications.
Due to our single estimating equation and large number of parameters, one might
expect multicollinearity and thus statistical insignificance to be evident. We found
most squared-input terms to be insignificant, and the cross-Y–X terms to be virtually
always insignificant (consistent with separability of Y and X). However, the cross-
and squared-output terms were almost invariably significant across specifications,
and many cross-input terms were also significant. Thus, we set only the bk�m or bm�k

terms, and the insignificant bkk or bk�k� terms, to zero.
15Färe (1988) and Färe and Grosskopf (1990) showed that the distance function duality with the revenue

function can be used to define the revenue-deflated shadow price of Ym via a distance-function oriented

Shephard’s lemma. The interpretability of these relative measures and their corresponding second-order

derivatives is more limited than the measures focused on above, which have a more direct linkage to

standard economic notions of, e.g., marginal products or output shares. However, these relationships can

be manipulated to obtain information about substitutability, as illustrated in Paul et al. (2000).
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Table 1

Scale economy and output/input elasticities, all specifications (evaluated at the average values of the data)

Output Input

Base Off-farm Base Off-farm

eY ;X 1.176 0.03 1.091 0.03 eX ;Y 0.654 0.01 0.732 0.02

TEO 0.883 0.927 TEI 0.929 0.937

eY ;XL
0.090 0.04 0.334 0.03 eX ;X�

L
	0.260 0.02 	0.304 0.02

eY ;XE
0.050 0.04 	0.008 0.03 eX ;X�

E
0.003 0.02 	0.010 0.02

eY ;XF
0.121 0.03 0.115 0.03 eX ;X�

F
	0.059 0.02 	0.104 0.02

eY ;XSD
0.261 0.03 0.185 0.03 eX ;X�

SD
	0.149 0.02 	0.136 0.02

eY ;XFD
0.190 0.02 0.144 0.01 eX ;X�

FD
	0.101 0.01 	0.105 0.01

eY ;XA
0.066 0.01 0.062 0.01 eX ;X�

S
	0.040 0.01 	0.038 0.01

eY ;XC
0.195 0.03 0.141 0.03 eX ;X�

C
	0.058 0.02 	0.049 0.02

eY ;XO
0.106 0.04 0.001 0.04 eX ;X�

O
	0.102 0.03 	0.071 0.03

eY ;XK
	0.021 0.04 	0.003 0.03 eX ;X�

K
	0.020 0.02 	0.012 0.02

eY ;XLD
0.116 0.03 0.120 0.02

eX ;YC
0.162 0.01 0.150 0.01

eY ;Y�
S

	0.228 0.01 	0.178 0.01 eX ;YS
0.138 0.01 0.136 0.01

eY ;Y�
O

	0.163 0.01 	0.113 0.01 eX ;YO
0.095 0.01 0.093 0.01

eY ;Y�
A

	0.400 0.01 	0.342 0.01 eX ;YA
0.258 0.01 0.240 0.01

eY ;Y�
I

	0.198 0.01 eX ;Y I
0.085 0.01

eY ;GMC
0.003 0.001 0.003 0.001 eX ;GMC

	0.001 0.001 	0.001 0.001

eY ;GMS
	0.0004 0.0006 0.0003 0.0005 eX ;GMS

0.001 0.0004 0.0005 0.0004
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The first-order elasticity and TE estimates for the four models on average across
the entire sample are presented in Table 1, along with their standard errors.16 The
primary overall measures, representing output/input patterns and performance
incentives for increasing the scale and diversity of farm operations, are the scale
elasticities eY,X and eX,Y. The presented measures suggest significant scale
economies,17 especially for the input-oriented specifications (recall that eY,X>1
and eX;Yo1 indicate scale economies). The high estimated returns for the input
specification may be attributable to output jointness or scope economies, which are
embodied in this measure but not captured in the output specification. In fact, since
16These estimates are computed using the delta method to evaluate the elasticity formulas at the average

values of the variables in the data. This method is based on linearizing the elasticity functions around the

estimated parameter values, and then using standard formulas for the variances and covariances of linear

functions of random variables. These elasticity estimates are very consistent in magnitude with average

elasticity estimates computed instead by estimating the elasticities for each data point, and then averaging

the elasticity estimates.
17Note that one might expect some scale economies to be captured by the farm-type dummies for SM,

LG, and CORP combined cohorts, because these types are largely defined according to size. However,

preliminary empirical investigation showed that any implied bias is not substantive. Estimated eY ;X for the

base output specification without the cohort dummies is, for example, 1.22 rather than 1.18.
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output but not input mix is directly represented in the input function (and vice
versa), scope economies could be over-stated for the input specification as well as
under-stated for the output specification for which output composition variations
are not accommodated.

The estimated scale economies are somewhat lower when off-farm income is
included. This implies that the increasing prevalence of off-farm income for small
farmers combats their scale disadvantages from only farm business activities. It could
alternatively suggest that a model implicitly based on constant output composition is
not representative when the extent of off-farm income is cohort-specific.

The individual input and output contributions underlying the scale elasticities are
also presented in Table 1.18 Note first, for the output specification that eY ;XK

is
negative for the base model and both eX ;YE

and eY ;K for the off-farm model,
although they are both small in magnitude and statistically insignificant. This could
suggest that XE and XK comprise a ‘‘production system’’ or are complementary; they
jointly contribute to output, so their individual contributions are not well
identified.19 The contribution of ‘‘other’’ inputs is also much smaller, and of labor
is much greater, when off-farm income is recognized. The remaining measures are
roughly similar across the base and off-farm models, with only labor and land
generating larger returns (shares) in the off-farm model. Also note that seed, feed,
and crop expenses (largely pesticides) seem the most important drivers of overall
farm output, perhaps because they are the variable inputs that determine the
productivity of the other, more fixed, inputs. The eY ;Y m� elasticities are more similar
across the base and off-farm models, with animal outputs comprising by far the
greatest output share, but off-farm income contributing nearly 20 percent.

The individual estimated netput shares from the input-oriented models are more
consistent across the base and off-farm specifications (although the contribution of
XE is again the wrong sign but insignificant for the base model), with off-farm
income contributing significantly to input use (but not as much as to output:
eX ;Y1

¼ 0:085). This is in part because the labor of the farm operator who works off
the farm is captured in our labor measure (so eX ;XL�

rises in absolute value to 	0.304
from 	0.260 on average), but also because recognizing off-farm income increases the
role of XE (more fuel is likely to be required to support off-farm activities) and XF

(fertilizer may, for example, substitute for labor-intensive tilling practices). By
contrast, the contribution of capital declines for the off-farm model. The eX ;Ym

elasticities also confirm that animal outputs require the greatest input share, with
corn second, and soybeans third.

These estimated shares, weighted implicitly by their estimated marginal products
or shadow values, are broadly comparable to the actual shares, based on market
18Risk may have an impact on the ‘‘ marginal product’’ or contribution of inputs as well as outputs,

although the direction of impact is not definitive. Ramaswami (1992) found that whether yield uncertainty

increases or reduces the marginal products of inputs, and thus input use, depends on whether input use is

risk-increasing or decreasing.
19This makes conceptual sense, and is consistent with the overall insignificance of the cross-XE

coefficients (evident from appendix Table 6), with a strongly positive (although not statistically significant)

bXE XK
coefficient.



ARTICLE IN PRESS

C.J.M. Paul, R. Nehring / Journal of Econometrics 126 (2005) 525–548538
prices, implied by the output and input values presented in Table 5 of Appendix A. It
is worth noting that soybeans appear to have larger (output and input) shares than
‘‘other’’ crops, whereas this is reversed in the primary data; soybeans thus seem to
have greater ‘‘value’’, but also to be more input-intensive. For inputs, labor’s share is
implicitly larger in terms of shadow value than the numeraire input, land (except for
the output base specification), contrary to their market values; opportunity costs of
land (labor) appear larger (smaller) than its true marginal product. The shadow
value of seed is also higher, but the values of capital and livestock inputs lower, than
their market values (shares).

Note also that the eY ;GMS
and eX ;GMS

measures suggest that planting GM corn has
a (statistically) significant but very small contribution to performance. Planting GM
soybeans seems to reduce productivity, although negligibly, which is consistent with
the notion that associated benefits such as managerial effort savings are not well
measured.20

Finally, measured efficiency (TE) is quite high, especially for the off-farm
specifications, with average levels of approximately 0.93–0.94 for the input models,
and 0.88–0.93 for the output specifications. These estimates suggest that a large
amount of farm diversity is explained by the broad characterization of output and
input relationships in these models, even with the restricting implications of constant
output (input) composition in the input (output) models.

Overall, the first-order estimates reported in Table 1 suggest that recognizing off-
farm income provides additional insights over the base models. We will thus focus
for our remaining discussion of the empirical results on the off-farm specifications,
for which parameter estimates and t-statistics are presented in Table 6 of Appendix
A.21 The many significant coefficients suggest quite strong explanatory power of
these detailed models.

To further evaluate the implications from our estimates about netput comple-
mentarities and their contribution to scale economies, we can focus on the (second
order) cross-effects or biases. These estimates, as shown above, are represented by
the cross-parameters of the estimated functions, reproduced in Table 2 in matrix
form. The XSD–XF ‘‘cell’’ for the output specification, for example, represents
bSDF

	 bFSD
.

Recall that the signs and magnitudes of these cross-effects indicate the extent of
input or output jointness, with a positive (negative) value implying complementarity
for the inputs (outputs). Table 2 thus provides two interesting results. First, the
cross-output relationships (from the input specification) are predominantly negative,
and half are significant, whereas the cross-input relationships (from the output
specification) are quite evenly balanced in terms of negative and positives, and
statistical significance. Second, the cross-terms tend to be much smaller for the
outputs than the inputs.

In combination, these results suggest that scope economies, or diversification,
contribute significantly to economic performance, but that the linkages between the
20See Marra (2001).
21We do not present the coefficients for all the specifications to reduce the volume of tables.
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Table 2

Cross-terms representing input and output jointness, off-farm model

Output

XL XE XF XSD XFD XA XC XO XK

XE 0.007

XF 	0.034 	0.024

XSD 	0.181 0.034 	0.032

XFD 	0.036 	0.044 0.003 	0.025

XA 0.015 0.033 	0.005 0.009 0.010

XC 0.169 0.072 0.030 	0.009 	0.009 	0.016

XO 	0.063 	0.103 0.294 	0.040 0.022 	0.003 	0.266

XK 	0.011 0.062 	0.171 0.194 0.048 	0.021 0.032 0.185

XLD 0.130 	0.048 	0.063 	0.079 0.044 	0.006 0.118 	0.056 	0.006

GMC 	0.003 0.003

GMS 0.001 0.000

Input

YC YS YO YA

YS 	0.006

YO 	0.009 	0.013

YA 	0.001 	0.011 	0.004

YI 	0.002 0.003 	0.008 	0.012

GMC 0.001 	0.00004

GMS 	0.001 0.0004
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outputs are not as strong as for inputs. Input composition thus seems to be more
consistent, or fixed across farm type or time, than output mix, particularly when off-
farm income is included (as implied from Table 1). This implies that an input-
oriented specification, that explicitly recognizes varying output composition, is more
appropriate for representing farm production processes.22

Note also that, although few clear insights emerge in the literature about how
uncertainty and risk affect farm production processes and productivity (Pope, 1987),
additional unmeasured jointness may arise from risk rather than technical
complementarities. As suggested by Just and Pope (1978), even if two outputs are
not correlated the production of one output is reduced if uncertainty over the other
input rises, and if they are correlated a positive correlation exacerbates and a
negative correlation reduces this effect. This jointness is also related to input use,
because uncertainty causes variations in the marginal products or contributions of
inputs across products that depend on risk factors.23
22This result is somewhat surprising since the inputs are so much more disaggregated than the outputs

that one might expect a specification targeting input use patterns would provide more insights than one

focusing on output production patterns. It is, however, consistent with Williams and Shumway’s (1998)

finding that much more aggregation of input than output categories is supported by empirical tests.
23The important roles of uncertainty and risk in explaining production, and particularly diversification,

behavior, emphasized by Newberry and Stiglitz (1981), was noted by an anonymous referee. However,

more explicit consideration of these behavioral motivations is beyond the scope of our primal model.
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Table 3

Primary measures, different farm types, off-farm

Output Input

Res SM LG CORP Res SM LG CORP

eY ;X 1.114 1.086 1.083 1.085 eX ;Y 0.593 0.650 0.805 0.855

TEO 0.928 0.910 0.940 0.927 TEI 0.935 0.932 0.938 0.942

eY ;XL
0.419 0.387 0.306 0.234 eX ;XL

	0.379 	0.360 	0.281 	0.202

eY ;XE
	0.064 	0.021 0.025 0.018 eX ;XE

0.004 	0.009 	0.024 	0.008

eY ;XF
0.169 0.098 0.083 0.121 eX ;XF

	0.091 	0.094 	0.113 	0.115

eY ;XSD
0.178 0.244 0.197 0.116 eX ;XSD

	0.093 	0.132 	0.164 	0.144

eY ;XFD
0.123 0.120 0.158 0.172 eX ;XFD

	0.095 	0.083 	0.113 	0.126

eY ;XA
0.048 0.053 0.062 0.085 eX ;XA

	0.011 	0.029 	0.045 	0.063

eY ;XC
0.105 0.150 0.160 0.142 eX ;XC

	0.066 	0.067 	0.043 	0.022

eY ;XO
	0.030 	0.019 0.031 0.011 eX ;XO

	0.071 	0.084 	0.076 	0.050

eY ;XK
	0.051 	0.055 0.001 0.092 eX ;XK

0.042 0.052 	0.024 	0.112

eY ;XLD
0.217 0.129 0.061 0.093

eX ;YC
0.088 0.104 0.194 0.200

eY ;Y�
S

	0.124 	0.188 	0.212 	0.179 eX ;YS
0.097 0.125 0.166 0.148

eY ;Y�
O

	0.123 	0.110 	0.096 	0.129 eX ;YO
0.074 0.081 0.091 0.127

eY ;Y�
A

	0.284 	0.321 	0.350 	0.411 eX ;YA
0.170 0.206 0.258 0.319

eY ;Y�
I

	0.350 	0.249 	0.139 	0.072 eX ;Y I
0.142 0.107 0.067 0.031

eY ;GMC
0.005 0.004 0.002 0.001 eX ;GMC

	0.002 	0.002 0.000 0.000

eY ;GMS
	0.001 0.000 0.001 0.001 eX ;GMS

0.001 0.001 0.000 0.000
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It is also useful to consider differences in the first-order measures across cohort
and time, from the elasticities presented in Tables 3 and 4.24 The scale elasticities
from the output model indicate that returns to scale vary little by cohort, which is
not intuitively very plausible. Those for the input model, by contrast, show larger
potential scale economies for the smaller farms.25 This discrepancy supports the
suggestion that the input model better captures output composition differences that
are an important component of economic performance for these farms. Both models
also suggest that the efficiency of small family farms is lower than for other farm
24The statistical significance of these measures varies little from the average over all the data, reported in

Table 1, because the parameters and standard errors are the same; the measures are simply evaluated at

different data points. We therefore omit the standard errors to simplify the tables. Note also that the time

trends are fairly smooth, so we only present estimates for every other year for brevity.
25Estimations were also carried out separately by cohort rather than pooled, to evaluate the suggestion

by an anonymous referee that the pooling across very different types of farms may be affecting our results.

The resulting scale economy estimates were very comparable for the input-oriented model, although the

RES farms had less scale economies than estimated in the pooled model, and significantly less than SM.

The individual input and output elasticities were also very similar. The output-oriented measures differed

more, with the most scale economies appearing for LG farms and the least for SM; the individual netput

elasticities also were somewhat perverse (including some large negative values) for the RES and SM farms.
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Table 4

Primary measures, first and last years, off-farm

Output Input

1996 1998 2000 1996 1998 2000

eY ;X 1.120 1.083 1.051 eX ;Y 0.686 0.713 0.754

TE 0.863 0.937 0.972 TEI 0.899 0.941 0.966

eY ;XL
0.403 0.339 0.288 eX ;XL

	0.342 	0.310 	0.288

eY ;XE
	0.043 0.013 0.002 eX ;XE

0.008 0.002 	0.026

eY ;XF
0.062 0.125 0.134 eX ;XF

	0.075 	0.091 	0.132

eY ;XSD
0.205 0.202 0.157 eX ;XSD

	0.143 	0.152 	0.123

eY ;XFD
0.155 0.137 0.135 eX ;XFD

	0.105 	0.087 	0.105

eY ;XA
0.063 0.063 0.064 eX ;XA

	0.043 	0.054 	0.028

eY ;XC
0.197 0.112 0.140 eX ;XC

	0.069 	0.051 	0.028

eY ;XO
	0.011 	0.111 0.008 eX ;XO

	0.082 	0.020 	0.065

eY ;XK
	0.075 0.070 0.045 eX ;XK

0.021 	0.049 	0.044

eY ;XLD
0.165 0.132 0.079

eX ;YC
0.151 0.164 0.136

eY ;Y�
S

	0.173 	0.180 	0.186 eX ;YS
0.115 0.131 0.148

eY ;Y�
O

	0.108 	0.111 	0.119 eX ;YO
0.089 0.090 0.097

eY ;Y�
A

	0.346 	0.339 	0.336 eX ;YA
0.241 0.236 0.239

eY ;Y�
I

	0.203 	0.197 	0.205 eX ;Y I
0.088 0.087 0.085

eY ;GMC
0.003 0.003 0.002 eX ;GMC

	0.001 	0.001 	0.001

eY ;GMS
0.00002 0.0003 0.0004 eX ;GMS

0.0005 0.0005 0.001
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types, as one would expect, although the efficiency scores vary little (especially for
the input model) and both models indicate that returns to scale are slightly
decreasing, and efficiency appreciably increasing, over time.26

Other interesting implications about input and output contributions, such as a
lower share or contribution of XL for farms in the larger cohorts, but higher
contributions of XF, XFD, XA and XK, are also apparent. The productive
contribution of labor seems also to be decreasing over time, along with XSD and
XC, and that of XE, XF, and XK to be increasing. The output patterns are less
definitive; the output contributions of YC, YO and YA are larger for CORP than any
other cohorts, but since eX ;Y is also smaller the individual output elasticities from the
input model are not directly comparable. If deflated by overall scale economies, there
is no clear cohort-specific pattern of eX ;Y m elasticities, as is also true over time
(although the share of soybeans is rising). Note also that the (positive) productive
26Separate estimation by year resulted in primarily insignificant and more variable parameter estimates

(especially for the output specification), such as decreasing and then increasing scale economies over time

(driven largely by XSD, XFD, and XO for the output model and YS for the input model), although the

overall result of significant scale economies remained in all years. The returns to GMC and GMS also were

larger in magnitude and varied more across years and specification.
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impacts of planting GM corn are even less substantive for farms in the larger as
compared to the smaller cohorts.

Some further insights may be obtained from the coefficients on the Rj factors,
from Table 6 of Appendix A, although some are difficult to interpret. First, the
coefficients on the time dummies for the output model suggest that overall
productivity has been declining (eY ;t ¼ ato0, t=1997–2000), which if interpreted in
terms of technical change implies (statistically significant) technical regress. The
input model, however, suggests some (statistically insignificant) increase in
productivity, at least in the first half of the sample. Although one might expect
little evidence of technical progress over such a short time frame, particularly when
the time dummies are picking up all year-specific external factors (such as weather)
that affect production, this again suggests that the output-oriented model may have
limitations for representing production processes when output composition
differences are an important performance driver. Estimates for both models also
imply that the larger cohorts produce less output per unit of input overall. This result
is somewhat perverse, although it could reflect very different input and output mixes
(more physical and livestock capital requirements, for example, or higher-valued
outputs) for the larger farms.

The remaining farm/farmer characteristics have little significant (or consistent)
impact. For example, older farmers appear to be more (but not statistically
significantly) productive. Additional debt (relative to equity) also seems counter-
productive, although only significantly for the input specification and a greater
proportion of rented land seems from the output—but not the input—specification
to contribute to performance.
5. Concluding remarks

In this paper, we estimate and evaluate measures of economic performance,
focusing on scale economies and their underlying output and input composition
patterns, for farmers in the U.S. Corn Belt. The alternative output and input
distance function specifications used for analysis have somewhat different
perspectives and provide slightly different implications, but generate consistent
messages. This consistency is somewhat surprising, given the asymmetric treatment
of output and input relationships, but is encouraging for the econometric
implementation of distance function models.

Overall, we find strong scale economies and output jointness, high and increasing
efficiency levels, and similar input and output contributions across both specifica-
tions. Scale and scope (output diversification) economies thus seem to have central
roles in explaining productivity and motivating growth patterns in the U.S.
agricultural sector.

Some implications about preferable specifications for analysis of agricultural
production processes also emerge from our estimates. In particular, our input-
oriented distance function model, by contrast to the output-based specification,
provides insights about the extent and distribution of scope as well as scale
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economies—which is crucial with substantive output composition variability. Input
mix seems relatively constant, at least within cohorts, perhaps due to both input
fixities and production systems. The output-oriented framework is also less able to
effectively measure the key productive contribution of off-farm income (likely
because this exacerbates the problem of variable output composition, since it is
particularly important for smaller farms), and suggests erroneous temporal shifts.
Thus, an input-oriented model is advantageous for the characterization of
agricultural production and performance, although the primal productivity literature
tends to focus on output-oriented (usually production function) models that limit
consideration of output composition differences.
Appendix A. Data

We use U.S. farm level data from the 1996, 1997, 1998, 1999, and 2000
Agricultural Resources Management Study (ARMS) Phase III surveys. ARMS is an
annual survey covering farms in the 48 contiguous states, conducted by the National
Agricultural Statistics Service, USDA, in cooperation with the Economic Research
Service. The relatively homogeneous corn/soybean region in the Corn Belt was
selected because it represents major corn and soybean cropping patterns where
GMO use is prevalent, and where off-farm employment opportunities and
urbanization trends are important. Ten corn-states are distinguished in the data:
IL, IN, IA, KS, MN, MO, NE, SD, OH, and WI (Table 5).

Our four farm outputs—corn, soybeans, other crops, and livestock—are measured
as total value of production. Off-farm income is measured as off-farm pay (before
taxes and other withholdings, including cash wages, salaries, tips, commissions, piece
rate payments, bonuses, military pay, etc.).27

For the inputs, labor is annual per-farm expenditures on labor; energy is
expenditures on gasoline, diesel fuel and other fuels; fertilizer is expenditures on
fertilizer, lime and other chemicals; seed is expenditures on seeds, livestock expenses
are expenses incurred in feeding and other operating expenses in raising livestock;
crop expenses are pesticides and custom services; and ‘‘other expenses’’ include
miscellaneous operating expenses. Labor is augmented for the off-farm models by
adding a wage bill for operator and spouse hours worked off-farm, valued at the hire
wage rate to approximate the use of farm and off-farm labor in a multi-activity
enterprise.28 Capital machinery is measured as the annualized flow of capital services
from assets (excluding land). Land is measured as an annuity based on a 20-year life
and 10 percent rate of interest, and an annualized flow of services from land, valued
at the quality-adjusted price of land.29
27Off-farm income used in the analysis does not include net income from operating another business or

other sources of income, although such sources of off-farm income are likely to become increasingly

important.
28The ARMS survey does not collect information on other input expenses for time spent off-farm.
29In efficiency analysis, spatial differences in land quality prevent the direct comparison of observed

prices. Land in agricultural production is typically quite heterogeneous in terms of soil type, associated soil
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Table 5

Summary Statistics, 2000, averages (values, total and each cohort)

Full sample RES SM LG CORP

Farms 2,714 593 526 879 716

YC 17,890 3,078 8,684 53,175 99,765

YS 14,839 3,613 41,285 74,038 74,038

YO 17,154 1,800 6,460 40,616 143,872

YA 42,058 5,128 15,210 65,746 440,049

YI 43,854 60,930 23,225 24,216 20,534

YTOTAL, farm 94,655 14,212 72,165 234,454 758,440

YTOTAL 138,509 75,142 95,390 258,670 778,974

XL 20,462 9,976 21,896 36,267 71,122

XE 3,611 855 2,624 9,258 18,399

XF 10,776 2,337 6,613 29,045 57,067

XSD 5,771 1,155 3,293 14,717 35,435

XFD 10,721 1,449 2,773 14,672 122,329

XA 12,756 1,020 1,868 13,455 169,643

XC 6,978 1,563 4,303 18,266 38,566

XO 12,996 4,240 9,030 29,665 67,072

XK 14,622 4,430 10,642 36,054 69,157

XLD 48,373 18,648 39,653 113,671 187,499

XTOTAL,var 84,071 22,595 52,400 165,345 579,633

XTOTAL 147,066 45,673 102,695 315,070 836,289

AGE 54 54 58 49 49

ED� 3 3 2 3 3

DA 13 8 9 16 21

RNT 49 38 36 59 56

GMC 30 20 29 30 33

GMS 57 57 57 55 60

�ED: 1=no high school, 2=high school/equivalent, 3=some college, 4=4 year degree, 5=graduate

school. DA is the debt-equity ratio, and RNT is the proportion of rented land.
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To translate the nominal values of outputs and inputs into real terms, all variables
are deflated by the estimated increase or decrease in cost of production in 1997–2000
compared to 1996 (in terms of agricultural prices) (Table 6).

For empirical production studies using panel data, the temporal pattern of a given
farm’s production behavior must be established. In the absence of genuine panel
data, repeated cross-sections of data across farm typologies may instead be used to
construct pseudo panel data (see Deaton, 1985; Verbeek and Nijman, 1992;
Heshmati and Kumbhakar, 1997). Pseudo panels are created by grouping the
individual observations into homogeneous cohorts, demarcated on the basis of
(footnote continued)

characteristics, and other productivity-related factors across states and agricultural statistics districts and

counties within states. Failing to account for these differences would lead to a biased measure of the land

input, and of economic measures (see, for example, Alvarez and Gonzalez, 1999).
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Table 6

Coefficient estimates, off-farm specifications

Output Input Output Input

Coeff Est t-stat Coeff Est t-stat Coeff Est t-stat Coeff Est t-stat

a0 1.628 1.31 a0 5.007 8.49 bXAXO
	0.003 	0.16 bXA� XO�

0.021 1.37

bXAXK
	0.021 	1.02 bXA� XK�

	0.006 	0.41

aXL
0.137 0.62 aX�

L
	0.056 	0.90 bXAXLD

	0.006 	0.40

aXE
0.247 0.31 aX�

E
	0.011 	0.24 bXCGMC

0.003 2.33

aXF
0.321 0.43 aX�

F
	0.124 	2.01 bXCGMS

0.000 	0.40

aXSD
1.716 3.12 aX�

SD
	0.159 	3.24 bXCXO

	0.266 	6.60 bXC� XO�
0.132 4.55

aXFD
	0.089 	0.42 aX�

FD
	0.005 	0.13 bXCXK

0.032 1.10 bXC� XK�
	0.061 	2.73

aXA
	0.050 	0.32 aX�

A
	0.138 	4.72 bXCXLD

0.118 3.02

aXC
	1.246 	2.97 aX�

C
	0.030 	0.47 bXOXK

0.185 4.26 bXO� XK�
	0.149 	4.85

aXO
0.194 0.24 aX�

O
0.036 0.46 bXOXLD

	0.056 	0.83

aXK
0.117 0.15 aX�

K
	0.183 	2.58 bXKXK

	0.148 	5.02

aXLD
	0.427 	1.45 bXOXLD

	0.006 	0.12 bXK� XK�
0.055 2.67

bXLXE
0.007 0.09 bX�

L
X�
E

0.018 0.68 bYC
	0.034 	0.57

bXLXF
	0.034 	0.56 bX�

L
X�
F

0.027 1.02 bY�
S

	0.198 	13.24 bYS
	0.009 	0.16

bXLXSD
	0.181 	3.06 bX�

L
X�
SD

0.044 1.95 bY�
O

	0.123 	12.85 bYO
0.074 1.55

bXLXFD
	0.036 	1.45 bX�

L
X�
FD

0.032 2.62 bY�
A

	0.303 	21.74 bYA
0.062 0.79

bXLXA
0.015 0.75 bX�

L
X�
A

0.008 0.80 bY�
I

	0.203 	14.57 bY I
0.115 1.49

bXLXC
0.169 3.43 bX�

L
X�
C

	0.054 	2.35

bXLXO
	0.063 	1.03 bX�

L
X�
O

0.019 1.06 bYCYC
0.019 8.61

bXLXK
	0.011 	0.16 bX�

L
X�
K

0.046 2.18 bY�
S

Y�
S

	0.043 	12.72 bYSYS
0.021 6.93

bXLXLD
0.130 2.67 bY�

O
Y�
O

	0.022 	9.67 bYOYO
0.019 10.54

bXEXF
	0.024 	0.58 bX�

E
X�
F

	0.029 	0.98 bY�
A

Y�
A

	0.024 	7.74 bYAYA
0.022 7.76

bXEXSD
0.034 0.89 bX�

E
X�
SD

	0.007 	0.30 bY�
I

Y�
I

	0.024 	15.29 bY IY I
0.008 2.54

bXEXFD
	0.044 	1.62 bX�

E
X�
FD

0.041 1.99

bXEXA
0.033 1.60 bX�

E
X�
A

	0.032 	1.93 bYCYS
	0.006 	1.66

bXEXC
0.072 2.08 bX�

E
X�
C

0.019 0.62 bYCYO
	0.009 	3.20

bXEXO
	0.103 	2.01 bX�

E
X�
O

0.020 0.50 bYCYA
	0.001 	0.25

bXEXK
0.062 1.26 bX�

E
X�
K

0.014 0.39 bYCY I
	0.002 	0.33

bXEXLD
	0.048 	1.18 bYCGMC

0.001 1.40

bXFXF
	0.010 	0.44 bX�

F
X�
F

	0.033 	2.24 bYCGMS
	0.001 	2.84

bXFXSD
	0.032 	1.01 bX�

F
X�
SD

0.042 2.73 bY�
S

Y�
O

0.026 6.21 bYSYO
	0.013 	4.15

bXFXFD
0.003 0.12 bX�

F
X�
FD

	0.024 	1.68 bY�
S

Y�
A

0.018 4.02 bYSYA
	0.011 	2.82

bXFXA
	0.005 	0.30 bX�

E
X�
A

0.034 2.60 bY�
S

Y�
I

0.012 3.72 bYSY I
0.003 0.54

bXFXC
0.030 1.31 bX�

F
X�
C

0.001 0.06 bYSGMC
	0.00001 	0.09

bXFXO
0.294 6.33 bX�

F
X�
O

	0.137 	3.43 bYSGMS
0.00045 1.88

bXFXK
	0.171 	5.31 bX�

F
X�
K

0.135 5.03 bY�
O

Y�
A

0.008 2.04 bYOYA
	0.004 	1.42

bXFXLD
	0.063 	1.40 bY�

O
Y�
I

0.002 0.72 bYOY I
	0.008 	1.91

bXSDGMC
	0.003 	3.26 bY�

A
Y�
I

0.020 4.97 bYAY I
	0.012 	1.93

bXSDGMS
0.001 1.01

bXSDXFD
	0.025 	1.10 bX�

SD
X�
FD

0.049 3.44 a1997 	0.179 	4.12 a1997 	0.054 	1.56

bXSDXA
0.009 0.65 bX�

SD
X�
A

	0.026 	2.41 a1998 	0.214 	4.49 a1998 	0.057 	1.32

bXSDXC
	0.009 	0.44 bX�

SD
X�
C

	0.033 	2.98 a1999 	0.444 	6.37 a1999 0.026 0.51

bXSDXO
	0.040 	1.21 bX�

SD
X�
O

0.060 2.23 a2000 	0.468 	6.70 a2000 0.002 0.04
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Table 6 (continued )

Output Input Output Input

Coeff Est t-stat Coeff Est t-stat Coeff Est t-stat Coeff Est t-stat

bXSDXK
0.194 6.60 bX�

SD
X�
K

	0.093 	4.96 aSM 	0.185 	4.35 aSM 0.111 3.46

bXSDXLD
	0.079 	2.09 aLG 	0.091 	2.05 aLG 0.131 3.89

bXFDXA
0.010 2.00 bX�

FD
X�
K

	0.010 	1.69 aCORP 	0.105 	1.74 aCORP 0.183 3.77

bXFDXC
	0.009 	0.52 bX�

FD
X�
C

0.000 0.03 aAGE 0.000 	0.15 aAGE 	0.002 	1.62

bXFDXO
0.022 0.87 bX�

FD
X�
O

	0.004 	0.18 aED 	0.027 	1.18 aED 0.010 1.31

bXFDXK
0.048 2.06 bX�

FD
X�
K

	0.025 	1.44 aDA 	0.001 	0.72 aDA 0.003 2.82

bXFDXLD
0.044 2.14 bX�

FD
X�
FD

	0.010 	1.61 aGMC
0.002 2.46 aRNT 0.000 0.67

aGMC
0.008 2.56 aGMC

	0.006 	2.34

bXAXC
	0.016 	0.85 bX�

A
X�
C

	0.003 	0.26 aGMS
	0.003 	1.70 aGMS

0.001 0.93

Table 7

The farm typology groups

Small Family Farms (sales less than $250,000)

1. Limited resource: Any small farm with: gross sales less than $100,000, total farm assets less than

$150,000, and total operator household income less than $20,000. Limited-resource farmers may report

farming, a nonfarm occupation, or retirement as their major occupation.

2. Retirement: Small farms whose operators report they are retired (excludes limited-resource farms

operated by retired farmers).

3. Residential/lifestyle: Small farms whose operators report a major occupation other than farming

(excludes limited-resource farms with operators reporting a nonfarm major occupation).

4. Farming occupation/lower-sales: Small farms with sales less than $100,000 whose operators report

farming as their major occupation (excludes limited-resource farms whose operators report farming as

their major occupation).

5. Farming occupation/higher sales: Small farms with sales between $100,000 and $249,999 whose

operators report farming as their major occupation.

Other farms

6. Large family farms: Sales between $250,000 and $499,999.

7. Very large family farms: Sales of $500,000 or more.

8. Nonfamily farms: Farms organized as nonfamily corporations or cooperatives, as well as farms

operated by hired managers.

Source: U.S. Department of Agriculture, Economic Research Service (USDA/ERS). ‘‘Farm Resource

Regions.’’ Agricultural Information Bulletin #760, September 2000. http://www.ers.usda.gov/publica-

tions/aib760/aib-760.pdf.
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common observable time-invariant characteristics such as location, quality or size of
land, or scope of agricultural activities relative to off-farm activities. The subsequent
economic analysis then uses the cohort means rather than the individual farm-level
observations.

The farm typology groups recently developed at the ERS and described in Table 7
of Appendix A allow us to assign our farm-level data to cohorts by typology and sub
typology, by state, by year. The data in typologies 1–3 (limited resource, retirement,

http://www.ers.usda.gov/publications/aib760/aib-760.pdf
http://www.ers.usda.gov/publications/aib760/aib-760.pdf
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Table 8

Cohort definitions

Small farms Large farms

Cohort Typology GV Sales Cohort Typology GV Sales

COH1 1–3 o2,499 COH9 6 250,000–330,000

COH2 1–3 2,500–29,999 COH10 6 330,000–410,000

COH3 1–3 >30,000 COH11 6 >410,000

COH4 4 o10,000 COH12 7–8 o1,000,000

COH5 4 10,000–29,999 COH13 7–8 >1,000,000

COH6 4 30,000–100,000

COH7 5 100,000–174,999

COH8 5 175,000–249,999

For our fixed effects: RES=COH1-3, SM=COH4–6, LG=COH7-10, and CORP=COH11–13.
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and residential) are relatively limited compared to the traditional farm data in
typologies 4–8. Typologies 1–3 were therefore grouped into three cohorts by level of
agricultural sales.30 Similarly, the data in typologies 4 and 6 were used to form three
cohorts, while data in typologies 5 and 7 were grouped into two cohorts each. These
categories are summarized in Table 8 in Appendix A. The resulting panel data set
consists of 13 cohorts by state, for 1996–2000, measured as the weighted mean values
of the variables to be analyzed. In total we have 650 annual observations (130 per
year, a balanced panel), summarizing the activities of 2127 farms in 1996, 4305 in
1997, 2479 in 1998, 3593 in 1999, and 2714 in 2000.

A summary of our data for 2000 is presented in Table 5 of Appendix A.31 The
table categorizes the output and input data and the characteristics by the four cohort
groups we have distinguished for presentation of the results—residential farms
(RES, cohorts 1–3), small family farms (SM, cohorts 4–6), larger family farms (LG,
cohorts 7–10), and very large and nonfamily farms (CORP, cohorts 11–13).
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Färe, R.S., Grosskopf, S., 1990. A distance function approach to price efficiency. Journal of Public

Economics 43, 123–126.
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